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By Barry Moskowltz and W. E. Moeckel

SUMMARY

An approximate method 1s presented for determining the pres-
sure distribution due to unsteady motion for thin wings of fairly
generel plen form. The locel source strength, which is propor-
tional to the normal component of the perturbation velocity, is
represented by a power series in the wing coordinates, in whioch
the coefflcients are functions of time., The method is valid for
arbitrary motions when the second derlvative of the perturbation
velocities with respect to time is not large.

As examples of the method, the load distributions due to
osclllations normal to the plane of the wing and pltching oscil- .
lations about a spanwlse axlis are evaluated as functions of time :
for a swept wing with streaight supersonic leading and trailing
edges. For the frequency of oscillation chosen in these examples,
the magnitude of the loadling differed only slightly from that
obtained by negleoting the time delays, but the positions of the
constant-pressure lines were noticeably altered.

INTRODUCTION

The problem of predicting the pressure distribution over thin
wings undergoing unsteady motion at supersonic speeds has been
studied by & number of investigators. In reference 1, equations
are given for the velocity potentiel in the vieinity of thin wings
for which the top and bottom surfaces are mutually independent.

An extension to finite wings with interaocting top and bottam sur-
faces is given in reference 2, but the area-cancellation technique
required therein is shown to be valld only when the second deriva-
tive of the perturbation velocitles wlth respect to time 1is not
too great.

For such relatively slow motions, however, a simpler method -
of anslysis then that presented In reference 2 can be developed.
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This method, which 1s presented herein, consists in expressing the
local source strength in a power series of the coordinates, so that
integrals similar to those encountered for steady motion are
obtained. This method 1s shown to be acocurate to the same degree
of approximation as that given in reference 2. The analysis was
completed at the NACA Lewis laboratory during June 1949,

SIMBOLS
The following symbols are used in this report:
A emplitude of oscillation

a,a',d,d',4",e integration limits

an,bn _ functions of time

b wing chord

CP pressure coefficient

c veloclty of sound

f,g,h,i,J functions of x, y, and

k slope of straight leading edge in oblique
coordinates

M Mach number ’

8 area included in forward Mach cone from (x,y)

t time

T free -stream velocity

n,v oblique coordinates parallel to Mach lines

Ug, ¥y oblique coordinates of wing vertex

Uypy Vg oblique coordinates of point on wing surface

w component of perturbation velocity in z-direotion

?’ﬁ’i} Cartesian coordinates
s
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Ze vertical coordinate of any point on wing
%o angle of chordline with respect to free-stream
direction
B cotangent of Mach angle, M2 -1
L half-wing span
o] effective local source strength, w/U
.ca,'b gource strength at time t-T plus source strength

at time 'b-‘rb

(et , N (x-£)2 62 (7-1)2

Te time delay, 2
B c g%

Ty time delay, !EE'E.LN.[. /\H'ﬁ)z ﬁz(}’;'ﬂ)z
B c ' ﬁ c

® perturbation-velocity potential

engular velocity of oscillation

ANALYSTIS

For thin winés s the equatlion for the time-dependent velocity
potential in the plane of the wing, as given in references 1 and 2,

is
(ay8) = - L ﬂ Jep b O @)

A(x-1)2-82 (y-n)2
where the source-strength dlstribution 1s given by

oa.,'b = U(E,Tlst"ra) + O(ﬁ,n,t-'rb) (2)
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The integration is performed in the z=0 plane over the ares
included in the forward Mach cone from sny point (x,y) and may
include areas off the wing surface. The time delays T and T
are given by (reference 1) & ®

ro= (x-fM Af(z-8)2-82 (y-7)2
8 Bze Bzo

(3)

v, o (x-tM \/(x-t)a-ﬁz(z-n)z
) 2 : 2
Be B'c

The functlonal dependence of O, ;, on these time delays can

be rendered explliclit by expanding the’ two terms of equation (2)
in Taylor's series about T, and T,s Trespectively:

T +Ty, &O -
Oa,b = 2 Eo(g:ﬂ:t) - a.z > O(gz’n i *
1 Ta2+'r.b2 Bzco(ﬁ,'q,'t) - (4)
27 2 a_bz £

where co(E,n,t) 1s the source strength corresponding to zero

time delay. This representation of the actual source-strength
distribution oé,b requires that none of the derivatives of

oo(t,n,t) are infinite and that the series is convergent. An

estimate of the magnitude of the angnlar velccity, for which
higher-order terms can be neglected, cen be obtalned by con-
sidering an oscillatory motlon of the type

ot

Uo(g)"l,t)m €

For such motions, successive derivatives of (, inorease in
magnitude by the factor ®w. If T, and T, are of the order

M/(1000 B%) seconds (see equetion (3)), then successive terms

of equation (4) decrease approximetely in the ratio ®M/(1000 B2),
If an error of approximately 5 percent is considered allowable in
the representation of oa,b’ then the neglect of all except the

zero~ and first-order terms may be considered valld for angular
velocitles less than approximately (20062)/M radisns per second.

1214
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In reference 3, the zero-order approximetion for unsteady
motion is menbtioned. The solutlon for this epproximation, as
seen from equations (4) and (1), is at each instant equivalent
to the steady-state solution corresponding to the instantaneous
distribution of source strengths. The solution for the First-
order approximation is considered herein. (Special cases for
this approximation are discussed in references 4 and 5 bubt the
derivations are not general.) The source-strength distribution
for this approximation becomes

a0y (£ 5 n,
-b = 2 O'O(E,n,-b) - MM (5)

In order to obtain solutions for finlte wings with interact-
ing upper and lower surfaces, the procedures developed by Evvard,
whereby the effect of disturbed flow ocutboard of the wing is
replaced by an equivelent Integration over the wing surface, can
be employed. In reference 2, this area-cancellation technique,
which was originally developed for steady motion, is shown, in
effect, to be valld also for unsteady motion if the motion ls
such that the square-root terms In the time~delay expression
(equation (3)) are negligible in the eguation for O, b Inasmch

as these square-root terms do not appear in the zero-order and the
first-order approximations given in equation (5), the area-
cancellation technique 1s entirely valid up to the first-order
approximation. Ko general procedure 1s yet available for higher-
order approximations when the upper and lower surfaces of the wing
interact.

Equation (5) leads to an essential simplification of the
procedure described in reference 2 for types of motion for which
the ares-cancellation technique is valid. This simplification
consists in expressing the velocity potential in terms of integrals
commonly encountered for the steady motion of wings. If, for
example, the motlon can be represented as & power series in the
coordinates, such as

Co(g ;"],t) = Z (ang +bn'q (6)

then equation (5) becomes
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(7)

b - 2t

a1 P
n ﬁzc at
where a, and b, are any functlon of time consistent with the

restriotions imposed by retaining only the first two terms of the
Tavlor's series (equetion (4)). Substitution of equation (7) in
equation (1) results in integrals of the type

$¥n® afF dn
/\Rx-E)Z-BZ(Y"ﬂ)Z
(]

where r and & are integers and the integrals have coefficients
that are functions of x, y, and ¢.

Although motions may ocour that require values of n greater
than one in equation (6), meny common types of unsteady motion are
represented by velues of n of zero and one. For these motions,
equation (7) becomes

Ca,b = £(x,7,t)+a(x,7,t) b+h(x,5,6) i (x,7,t) Ene 3(x,7,£)E2  (8)

where

1214
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e
Bzc ot
g2
Bzo 3%

If equation (8) is used In equation (1), the quantity f at any
instant is seen to be an effective angle of atteck, and Ug and
Uh are effective rates of steady pitch and roll about the § =0
and 1=0 axes, respectively. For a wing of the type for which
the methods of reference 2 are appliceble, the procedures used to
determine the veloclity potential in steady flight at angle of
attack and in steady roll and pitech may be used for all unsteady
motions representeble by the first three terms of equation (8).
When the velocity potential has been determined, the load dis-
tribution 1s obtained from the egnation

2 1 09
Cp = 'ﬁ@*ﬁ&‘)

which, from equations (8) and (1) becomes

3, X I W, 3 3¢
2 1 3 4 S £ 1
cp='ﬁ f3x+sax+h3x+13x+'j_3§+¢l E+ﬁ¥>+

1 'ah 19 of 1ot
°"z<§§+ﬁ§§>+°"s<a—x+ﬁs§}°"4<g+ﬁa'

v @% *F g%):, (¢)

where

v [/ ____aban
o oL

17 ) [ A fxeb)2-g2(3-n)2
S
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il ﬂ £af an
" U Nex-02-s2 g2
I ndf an
wok e
s
9y = - U En af dn
= | ] Nx-t)2-(5-n)?
S
O = - U [/ EZ at dn
> = / N (x-£)2-82 (y-n)2

The first term within the brackets of equation (9) yilelds a preasure
coefficient corresponding to steady flight at angle of attack £
the second term is the pressure coefficlent due to ateady pitch at
instantaneocus rate Ug; and the third term ie the pressure coef-
fioient corresponding to steady roll at instantaneous rate Uh.
Equations for these pressure coefficlents are derived for a fairly
generel class of wings in reference 6, The remaining terms in
equation (9), however, are not, for the most part, to be found in
gteady-motion literature and must be independently evaluated.

o
n
[}

*

APPLICATION

As an 1lluetration of the procedure outlined In the seotion
entitled "Analysis," explicit expressions will be derived for the
load distribution resulting from motions expressible in the form

Oa.,'b = £(x,y,t) + S(I:Y:t)g (10)

A flat-plate wing of the plen form shown in figure 1 will be con-
gidered. This wing is similer to that analyzed in reference 6,
except that no subsonic trailing edges appear.



NACA TN 2034 9

The integrations required to determine load distribution are
simplified if, &8s in reference 2, the equations are -transformed
to the obligue coordinate system whose axes are parallel to the
Mach lines. The transformation equations are:

W
u = 5% (E-Bn) v = '2MT3 (¢+Bn)
t = 3% (v4u) n =‘ll-1 (v-u)
; ) . (1)
% = g (x-y) v, = zp (x+By)
x = 1% (vuy,) vy = %i' (=g y

The elementary area is (2B/M%)du dv. In this system of coordinates,
for types of motion given by equation (10), equetion (9) becomes

o - - °n M P2 %

2le B2, L) Bl 2+ 2)+
P U 2B\ ou, Ov, 2B\ ou, Ov,

> 13 13
CP1<§£+ITB_1:: + S %-‘-Ua'b) (12)
where
U du dv

BT BRI ) ()
® = __t_IE_'f(v+u) du dv
2M°r ’\/(uw-u) (v-v)

8

The integration procedure, which employs area-cancellation
technique for regions influenced by areas off the wing plen form,
is the same as that described in reference 6, so that only an
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ocutline of the derivation need be repeated herein. As in refer-
ence 6, the origin of coordlnates 1s placed at one of the Junc-
tures of supersonic and subsonic leading edges. The straight
supersonic leading edges ure defined by w = =kv and

Mng
u, = — (1-k) - k’ respectively, and the curved subsonic lead-

ing ed.ges are defined by u = uz(v) and v = vg(u), respectively.

The Mach lines from the vertex and from the Junctures of the
supersonic and subsonlc leading edges divide the plan form into
elght types of region. The Integration limits in each region
are found as described In reference 8. The presentation 1s
simplified if the expression for Cp is given for a general

reglon of the wing, together with the values of the limits to be
used for each region. For the general region the quantities
required in equation (12) become

n 'D. +k-v uw-u
s —- V(uw-u) ot E) V kvww]

kn, Mny(1-k) - k( ) -

2 ’\ﬁuw-d.") (vy=v4) (13)
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3u, +kK
°92=_g£{[é w + 1-_(‘1"+v 12-"->,\/(uwu)(v +->
Mx
' e
uw+kv ( ( 1) 5uw-kvw) -1 PR
#(1 - =) —2—¥ )tan +
N B3 k) £ ‘\’kvwm .
(% vw+Mno %}_ N ( . %)Q-?)ku.w-l-vwin()(l-k) + %:D ,\/(uw_u) vw+ku-M-q0(l..k)> +

I A v, Mrg(1-k) <§ Mno(1-k) .

NE Tt T3
a.l
3Ky, =V no(l-k) k(u,~u)
5 4k vw+ku-M1]o(1-k) a'-
2 z‘lw+2vw+v4+d l\/(u.w-d. Ya -u)} (132)

M a"’l+a°"1 I B ARRAA W ol - WY D
2B \duy ~ Owg/ 2xP au/’\| vy-v4 av Uyr-U3

. a'
k;l -1 uw-u & -l k(u-w-u)
N (Ean R P '\/v‘#m-nm(_l A )




e

(’ Ty + ;)(1 - -—-—),\[ :":3 (z - -—-> [r\l(uw-u) (rur k)Jd. *
(2 . 1£§2)[N(%.u) (,vwi-ltu-!&no(l-k))]a' +
- a'
/e ()
o) [
aw

/
ku_+v. -Mno(l- - k(u,-u)
(e 23

l‘l'%(-'l
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where the integration limits for each region are given in the follow-
ing table:

Wing regions (fig. 1)
Linit
I IT |IIT | IV V VI VIl VIII
& fugy |ug |y ivg uz ug uz “kvy
a "kv.w -ka 'IJ.3 nu3 uz n 3 us ug
Mng Mng
al | Uy | | wylwg | Wy (k)| (k)| ug
J4 T4
k k
a' Uy ug| wylua Uz uy ug Uz
N N | | Welny | W )| (k) - f e
AL Y4
k k
231 U5t s, + U3
e Ve Ysr k| & " z()l-k) & -ku% + -kuz +
Mo _ Mng(1-k) |Mno(l-k)

Substitution of equations (13) to (13c), with the appropriate limits,
in equation (12) gives the pressure coefficient in each region
corresponding to unsteady motions of the type of equation (10).

From equations (13) to (13c) and (12), load distributions
corresponding to two types of unsteady motion have been computed
for the wing shown in figure 2. For this wing, which bas stream-
wige tips and supersonic trailing edges parallel to the supersonic
leading edges, only the first flve reglons of the wlng shown in
figure 1 are present.

The first type of motlon considered is an oscillatlon of the
wing in the z-direction at constent attitude oy with respect to
the free-stream direction. The source strength as a function of
time is '
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o(t) = HEL - 4 cos 0t + g (14)

where A is the amplitude of oscillation. The emplitude A 1is a
constant herein but can alsc be a function of time. Inasmich as

the loed distribution due to steady flight at angle of attack is
known and can be superimposed on the load distribution due to the
oscillation, only the first term of equation (14) will be considered,
that is, the motlon is to be defilned by

Op(t) = & cos Wt = ao(t) (15)

Comparison of equation (15) with equations (6) and (8) shows that
for this motion,

Oy 1 = 24 (cos Wt + B gin wt ) - (WA g4y g) ¢ (18)

For the top surface of the wing, the required expressions for the
coefflicients and their derivatives become

£ = -2A <cos 0t + ’—‘Mé-‘-” sin wt) (17)
B%c
g = ?H_d_ Aw sin w} (172)
[¢}
Of o - _2M pw gin wt ' (17b)
ox gZc
19f 2AW ip o - DM Wt (17¢)
.[-I' g = E 8in - Bz_c co8 c
E.o (178)
3x
1 2AUP
T % = B_ZEE cos Wt (17e)

1214
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Substitution of equations (17) to (17e) amd (13) to (13c) in
equation (12) ylelds the desired expression for the load distri-
bution as function of wing coordinates and time.

The second type of mobion considered is an cscillation of
the wing sbout the spenwise axis, £ =0O. The appropriate expres-
sion for the source strength can be cbtained by considering the
equation of motion of the z coordinate of the wing. This equation
is '

z, = At cos wt (18)

At the wing surface the boundary condition is

w _ldzy %%y 1 Oz
% '<ﬁ>z=o T35 OSF T 5% (19)
so that
Op(€,t) = A cos @t - A_lié.osinmt =-a.0(t) + ay(t)t (20)

Inesmich as the loed distribution due to the flrat term in equa-
tion (20) is known from the preceding example, only the equation

Ty = aq (6)E (20a)

need be considered here. The totel loed distribution for the
pitching oscillation can be obtained by superposlition of the
load distribution due to vertiocal oscillation end that obtained
for equation (20a). Comparison of equation (20a) with equations
(6) and (8) shows that

2AW xM® ZAw. 2
T e — et - t 21
%, b i (sin @b + =z, cos w’o)g <52c2 008 © )E (21)

For the top surface of the wing, the requlred coefficlents and
their derivatives are
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g = 280 {5in wt + XMW 5og (22)
Mc Bzc
2AWP
J = S5= cos Wt 22a
o (22a)
g% = 2A0F cos Wh ' (22v)

BZOZ ]

1.3 _ 2P XM )

= = cos Wt - —— sin Wt . (220)

§ 5 NI 820

1 %ﬂ. - . _2Ad sin Wt (224)

The remaining coefficlents and derivatives in equation (8) are
zero.

The unsteady load distributions for the two types of motion
represented by equations (15) and (20), were computed as func-
tion of time for the wing shown in figure 3. The Mach number
angular velocity, and veloclty of sound were assumed to be N2,
60 radlans per second, and 1000 feet per second, respectively.

For these values, terms containing (l)z/c2 could be neglected

for both types of motion with an error of less then 1 percent

in the velues of C,.p- Thls error includes the effect of retain-
H

ing only the first two terms of the Taylor's series (equation (4)).

The omlssion of terms of order 0)2/(:z eliminates equations (17e),
(22a), (22b), (22¢), and (22d4), and the second terms in equations
(170) and (22) from the computation. For the wing analyzed, the

agpect ratio 1s I_{_;‘_O_l_ = M =A]2 and the sweepbeck angle is 26.6°

(k = 1/3). Nondimensional coordinates (uy,/b, v,/D) were used in
the computatlon.
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The results of the computations are shown in Pigures 4 and S.
For vertical oscillations, the loading at +=0 1is the steady-state
1ift distribution corresponding to an effective angle of attack
equal to the amplitude 4 (equation (18)). This load distribution
is also obtained for the second type of motion when +=0 (equations
(20) and (21)). For wt =x/4 (figs. 4(b) and 5(a)), the loed
distributions obtained by retaining the first-order terms in the
source strengths are compared with those obtained with a zero-order
approximation. The zero-order load distributions, which ocorrespond
to & neglect of the time delays, are seen to differ considersbly
from those obteined by first-order theory, although for the low
angular velocity used the magnitudes of the loadings are almost the
same. For Wt = /2 (figs. 4(c) and 5(b)), the loading resulting
from firgt-order theory is seen to be small. The loading is zero
by the zero-order approximetion for the vertical oscillation. The
load distribution for Wt = x,5t/4, and 3x/2 are the negative of
the distributions for ®t = O,x/4, and =/2, respectively.

SUMMARY OF THEORY AND RESULTS

A method has been presented for determining the pressure
distribubtion on fairly general classes of thin wings undergoing
unsteady motion for which the seconl derivative of the perturba-
tion velocity, with respect to time, is not large. The method
consisted in expressing the local time-~dependent source strengths
that represent the wing motion in a power series of the coordinates,
80 that integrals similar to those encountered for steady motion
were obtained.

For a rather general wing with no subsonic trailing edges, an
explicit expression for the pressure coefficient due to unsteady
motion was obtained as & function of time. As examples, the load
digtributions for a swept flat-plate wing, with stralght supersonlc
leading end trailing edges and a streamwise tip, undergoing oscll-
lations in a vertical direction and pitching oscillations esbout a
spanwise axis, were evaluated. For the frequency of oscillation
chosen, the magnitude of the loeding differed only slightly from
that obtained by neglecting the time delays, but the positions
of the lines of constant pressure were noticeably altered.

Tewls Flight Propulsion Laboratory,
National Advisory Committee for Aeronsutics,
Cleveland, Ohio, August 10, 1949.
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1214

. Figure l. - Wing regions and geometrical parameters for symmetrical
wing with straight superaonic leading edges, arbitrary subsonic
leading edges, and trailing edges swept along Mach lines.
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Figure 2, - Wing regions and geometric parameters for symmetrical wing with

stralght supersonic leading edges, trailing edges parallel to leading
edges , and streamwise tips,

Y21
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